

Digital Retightening

Common Specifications

Data Memory	999 data (T-point torque)
Arithmetic Function	Sampling, Maximum, Minimum, Means
Measurement Mode	Peak/Run
Data Output	RS232C I/F, USB serial output
Zero Adjustment	Auto zero function (C key)
Other Function	Auto power off (3 min./10 min./30 min./non)
Power Source	Ni-MH Nickel metal-hydride battery
Continuous Use	Approx. 20 hours (8 hours by 1 hour charging)
Battery Charge	Approx. 3.5 hours
Operating Condition	0-40 Celsius

Inspection

Digital Interchangeable

Signal

Accuracy ±1%

• Detects movement of fastener for more accurate testing

 Software converts measure 	ured torque t	to initial	tiahtenina	toraue	value

		Torque Range									Hand	Overall		
Model		N⋅m		kgf⋅cm		kgf⋅m		lbf∙in		lbf-ft		Force	Length	Weight
		MinMax.	1digit	MinMax.	1digit	MinMax.	1digit	MinMax.	1digit	MinMax.	1digit	[N]	[mm]	[kg]
-	CTB10N2x8D-G	2-10	0.01	20-100	0.1	0.2-1	0.001	20-90	0.1	1.5-7.3	0.01	48.1	212	0.46
	CTB20N2x10D-G	4-20	0.02	40-200	0.2	0.4-2	0.002	36-180	0.2	3-14.5	0.02	92.2	214	0.47
Ī	CTB50N2x12D-G	10-50	0.05	100-500	0.5	1-5	0.005	100-440	0.5	7.5-36	0.05	196.9	282	0.58
	CTB100N2x15D-G	20-100	0.1	200-1000	1	2-10	0.01	200-880	1	15-73	0.1	275.5	384	0.63
	CTB200N2x19D-G	40-200	0.2	400-2000	2	4-20	0.02	360-1700	2	30-150	0.2	428.3	475	0.78
	CTB360N2x22D-G	72-360	0.4	720-3600	4	7.2-36	0.04	650-3100	4	52-260	0.4	498.6	713	1.13
1	CTB500N2x22D-G	100-500	0.5	1000-5000	5	10-50	0.05	890-4400	5	73-360	0.5	549.5	949	4.00
	CTB850N2x32D-G	170-850	1	-	-	17-85	0.1	-	-	124-620	1	608	1387	5.14

- 1. Overall length does not include interchangeable head.
- For interchangeable head, refer to page 40-43.
 For infrared data transfer, use with R-DT999 (Refer to page 64).
- 4. PH (Pipe wrench head) type interchangeable head is not available for this model.

s 1. Battery pack (BP-5)

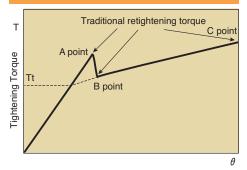
- 2. QH interchangeable head (Refer to page 42).
- 3. Quick battery charger BC-3-G (100V-240V).

100-240V

3attery F	ack (P.45)
-----------	-------	------	---

Mo	odel	
BF	P-5	
Quick Battery Charger (P.45)		
Medel	Description	

Printer (P.65)


	*			
Model				
	EPP16M2			
Connecting Cable (P.45)				
Part #	Applicable Model			
379	CTB2-G → EPP16M2			
(575)	CTB2-G → PC (D-SUB 9 Pin Female)			
(584)	CTB2-G → PC (USB A type)			
Data Filing System (P.64)				

CD-ROM

Advantages of the New Retightening Method: T-point Method

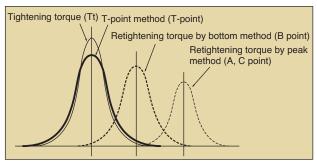
- Anyone can measure the tightening torque easily.
- Requires less time to perform the measurement.
- Dispersion of data is small (Figure-3).
- No individual interpretation or performance variable is involved in measuring the torque (Figure-3).
- Internal software converts measured torque to initial tightening torque value (Figure-3).

Figure-1 Traditional retightening torque method

Retightening Torque Method

Retightening torque method aims to measure the torque at which a tightened bolt start to rotate again as further torque is applied. The retightening measured values are classified as one of these three kinds:

- The torque which overcome the static friction of the bolt (A point).
- The torque at which the bolt starts on turn continuously (B point).
- The maximum torque at this inspection (C point).


Proposal of T-point method (Figure-2)

Retightening torque first starts with the rotation of the head only, then the screw starts to rotate. Shifting from static friction to dynamic friction, the friction whip settles and the torque starts to increase at the steady pace again. T-point method figures TT as retightening torque value.

Figure-2 New retightening torque method by CTB2-G

Figure-3 Distribution of retightening torque

Refer to Tohnichi Torque Handbook Vol. 7 on page 42 to 43 for the details.